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@Jianyu Zhang

What AI did we achieve?
● AI for artificial environments. e.g., Chess, Go, Atari games.

● AI for specific real-world tasks. e.g., handwritten recognition, face 

recognition.
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@Jianyu Zhang

What AI did we achieve?
● Competence on specific tasks 

○ One can collect a lot of data

○ One can define a precise criteria of success. e.g. game scores, precision

■ This criteria not only reveals whether a machine has achieved a goal, but also 

reveals how the machine falls short of the goal.

■ Human designers can fix the problems one after the other until the machine is 

deemed good enough for the task.

■ At the end, instead of proving that our machine is intelligent, we often find 

satisfaction in proving that we are intelligent.

solve a narrow range of tasks 

require a lot of examples

rely on priori knowledge of 
human designers

AI for the closed world

This is not what we want!

1. Leon Bottou, https://leon.bottou.org/feuilleton/turing

1

https://leon.bottou.org/feuilleton/turing
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@Jianyu Zhang

What AI do we need? 
● Solves any task that a human could possibly undertake

○ With fewer examples, 

■ We cannot wait too long for a AI system to learn a new task.

○ And less priori knowledge from designers. 

■ We cannot assign one human designer to each possible task. 

AI for the Open-world
AI for open-world requires a machine to learn on a wide range of new 

tasks/domains (versatility) quickly using fewer examples and less 
task-specific priori knowledge (from human designers). 

AI for the open-world
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@Jianyu Zhang

Learning Principles to build AI for 
open-world 

Rich Features,
a richer set of features beyond the need of i.i.d. 

generalization, helps the learning of a broader range of 
unseen tasks;

disentangled representation,
driven by a cheap yet reliable

pressure predictive disentanglement, reduces the number of 
examples required on unseen tasks

inference-time learning,
a memory-based method at inference-time, leveraging rich 

features and disentangled representation, reduces the 
relying of designers’ priori knowledge.

AI for the open-world 

wide range of tasks

few examples

less priori knowledges
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@Jianyu Zhang

Can we translate the success in Closed-world to 
Open-world?  

● 💡Train on everything! I.e. The mainstream belief of foundational models. 
○ Computationally infeasible: 

■ Combining two pieces of knowledge results in a new knowledge, leading to an 
exponentially large number of possible combinations

○ Practically implausible: 
■ Pieces of knowledge change over time.

No! We need other learning principles to build AI for the open-world!

AI for the closed-world AI for the open-world 

narrow range of tasks wide range of tasks

Lots of examples few examples

Priori knowledges from designers less priori knowledges

🤔
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@Jianyu Zhang

This talk explores such learning principles and corresponding 

techniques to build AI for the open-world.

Note: this is not a talk about language models or vision-models or applications of deep 

learning,  even though it contains many large-scale experiments of such kind. 
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@Jianyu Zhang

1. rich features
a richer set of features beyond the need of i.i.d. generalization, helps the 

learning of a broader range of unseen tasks;
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@Jianyu Zhang

Rich Features

● Benefits of rich features in learning unseen tasks. 

● Can we construct rich features by ERM training on big data & large 

model (i.e., foundational model)? 

● Approaches to construct rich features
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@Jianyu Zhang

Warm-up case

● Background
○ L2 weight decay in deep neural network stochastic optimization has a sparsity bias (sparse 

features)  [Blanc et al. 2020]

● Transfer learning experiment
○ Pretrain resnet on cifar10 (1st row), then linear-probe on cifar100 (2nd row).
○ As expected, L2 weight decay helps IID performance  on Cifar10,
○ but hurt OOD performance on Cifar100 (linear-probe). 

Blanc, Guy,  et al.  Implicit regularization for deep neural networks driven by an Ornstein-Uhlenbeck-like process. PMLR, 2020.
Zhang, J., & Bottou, L. Learning useful representations for shifting tasks and distributions. ICML 2023.

[zhang et al. 2023]

Rich features help learning unseen tasks.



11

@Jianyu Zhang

Can we find rich features by scaling-up ERM training?

● Let’s compare two representations (same number of 

parameter): 
○ 1)  Train a large model with supervised or self-supervised 

objective. Then take the penultimate layer as representation.

○ 2) Train multiple small models (on the same data)  with 

different  random seed.   Then concatenate the penultimate 

layer representations.  

● We know rich features help learning unseen tasks. 

● 🤔  Which representation is better for learning unseen 

tasks (via linear-probe or fine-tune)? 

1.  Random seed controls network initialization and examples order in SGD optimization. 

1
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@Jianyu Zhang

● Supervised transfer learning case. 
○ Pretraining ResNets on Imagenet.
○ linear-probing / find-tuning on broad unseen tasks
○ Orange solid line: 1st representation, big models
○ Blue solid line: 2nd representation, concatenation of small models

Zhang, J., & Bottou, L. Learning useful representations for shifting tasks and distributions. ICML 2023.
(Zhang, et. al, 2023)

For IID, big model 
(resnet50w4) 

outperforms the 
concatenation of 

small models.
(nothing to supervise)

For the learning on 
unseen tasks, the 
concatenation of 

small models is far 
better!
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@Jianyu Zhang

● How about using Transformer architecture?

(Zhang, et. al, 2023)

Same result.

Zhang, J., & Bottou, L. Learning useful representations for shifting tasks and distributions. ICML 2023.



14

@Jianyu Zhang

● How about using self-supervised learning, large data, and large model?
○ SWAV is trained on ImageNet. 

○ SEER is trained on 1B images with 10B dense parameters.

(Zhang, et. al, 2023)

Same result.

Zhang, J., & Bottou, L. Learning useful representations for shifting tasks and distributions. ICML 2023.
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@Jianyu Zhang

● 😢 NO. 

Once the optimization process discovered a group of features that are helpful to 

the IID training, there is no motivation to find other features that not are 

incremental helpful to training, even though these features could be 

substantially help to other distributions (OOD). 

Can we find rich features by scaling-up ERM training?

This confliction between rich features and optimization motivates 
us to move from “optimization” to “memory”, and create Memory 

Mosaics (to be introduced later).  
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@Jianyu Zhang

Approaches to construct rich features

● Adversarial discovery
○ Bonsai [Zhang, et al., 2022]  

● Randomness
○ feature ensemble [Zhang, et al., 2023]

○ very-large dropout (in fine-tuning) [Zhang, et al., 2024]

○ weight averaging  (in fine-tuning) [Ramé, et al., 2023]

Zhang, J., Lopez-Paz, D., & Bottou, L. (2022, June). Rich feature construction for the optimization-generalization dilemma. ICML
Zhang, J., & Bottou, L. (2023, July). Learning useful representations for shifting tasks and distributions. ICML
Zhang, J., & Bottou, L. (2024). Fine-tuning with Very Large Dropout. arXiv preprint arXiv:2403.00946.
Ramé, et al. (2023). Model ratatouille: Recycling diverse models for out-of-distribution generalization. ICML
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@Jianyu Zhang

Rich Features

● Benefits of rich features
○ Help learning broader range of unseen tasks

● Can we find rich features by scaling-up ERM training? 
○ No!

● Approaches to find rich features
○ Adversarial discovery — Bonsai 

○ Randomness — feature ensemble, weight averaging,  very-large dropout
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@Jianyu Zhang

2.  Disentangled representation
driven by a cheap yet reliable pressure predictive disentanglement, 

reduces the number of examples required on unseen tasks
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@Jianyu Zhang

Disentangled representation

● Benefits of disentanglement 

● The pressure that motivates a model to learn disentanglement

● An architecture to learn disentanglement in practice (memory 

mosaics) 
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@Jianyu Zhang

Benefits of disentanglement

❖ Example: Tracking Three Moons

➢ Astronomer A tracks the 

joint position of three moons 

■ Least Common Multiple 

(periods of moons) 

➢ Astronomer B instead tracks 

each moon separately 

■ Max (periods of moons)

��������

[🌗,🌝,🌕]

A full period of the 
combination of 

three moons 

…

…

������

The period of 
the slowest 
moon

Tracking notes of 
Astronomer A

Tracking notes of 
Astronomer B

… … …

Disentanglement leads to quick learning!
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@Jianyu Zhang

The pressure that motivates a model to learn 
disentanglement

● Statistical view [Roth 2022]: disentanglement is defined on 

“independence”. 
○ Lack robustness with respect to changing data distributions.

● Causal view [Bengio 2013, Bengio 2019]: disentanglement is defined 

on active environments. 
○ Cannot be tested without active experiments 

Roth, Karsten, et al. "Disentanglement of correlated factors via hausdorff factorized support." arXiv preprint arXiv:2210.07347 (2022).
Bengio, Yoshua, et al. "A meta-transfer objective for learning to disentangle causal mechanisms." arXiv preprint arXiv:1901.10912 (2019).
Bengio, Yoshua. Deep learning of representations: Looking forward. In International conference on statistical language and speech processing, pages 1–37. Springer, 2013b.

Not reliable

expensive
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@Jianyu Zhang

Predictive disentanglement:  a quick learning 
pressure

● View one natural sequence (e.g. an article) as one environment/distribution. (cheap environments)  

● Training objective minimizes average loss at different sequence length. (the area under the curve).

● The tail of sequence is easy to model/predict anyway.

● Then training objective instead minimizes the sequence length needed to produce good predictions. 

(The “quick learning” pressure)

● Disentanglement occur when it is more efficiently to predict in isolation than together. (i.e. quick 

learning  →   disentanglement) 

What we need to do is to encourage this “prediction in isolation” behavior. 
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@Jianyu Zhang

Memory Mosaics: 
architecture that encourages disentanglement

● Memory Mosaics is a network of multiple separated Associative Memories. 

● Associative memory contains key-value pairs. 

○ Key     represents  the recent past

○ Value represents  the near future

○ Key-value pairs are treated as permutation invariant

No position encoding. 

Key is query. 
Query is key.

Encourage “prediction in isolation”

Zhang, J., Nolte, N., Sadhukhan, R., Chen, B., & Bottou, L. (2024). Memory mosaics. ICLR.
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@Jianyu Zhang

Associative Memory (no query!)

● Store key-value pairs, retrieve values given a key.  (Invariant to permutation of 

stored pairs. )

○
● The retrieval function is a conditional expectation.

○
● Estimate the key-value distribution by Kernel Density Estimation (e.g. 

Gaussian kernel smoothing)

○
●  Connect to attention by fixing key vectors squared norm.

○
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@Jianyu Zhang

Construct key and value (on sequence data)?
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@Jianyu Zhang

How to construct key and value?

     Simple Case

 expressive case
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@Jianyu Zhang

��������Evaluate the “prediction in isolation” bias 
in Memory Mosaics
● Experiments on Tracking Three Moons problem

● Left:             one big associative memory 

● Right: many small associative memories 

One big associative memory: Good predictions 
after the least common multiple of all moons 
periods (red vertical line). 

Many small associative memories: Improving 
predictions after each moon periods (black 
vertical lines).

��
�� ♂

👷 I am good!
Multiple small associative 

memories make things easy.
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@Jianyu Zhang

Memory Mosaics on real-world tasks
● A fair comparison with 

transformer architectures.

● C-mems (contextual memory) 

are associative memory units of 

context. 

● P-mems (persistent memory) 
are associative memory units of 

gradient-updatable key-value 

pairs. (fixed after training).

● NO position encoding

● key=query.
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@Jianyu Zhang

In-distribution performance

● Choose Transformer as a baseline, because it performs well on languages. 

● Train on 3-4 years old tiny stories. 

● Memory Mosaics and Transformer performs closely. 

We focus on open-world and 
out-of-distribution performance.
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@Jianyu Zhang

Out-of-distribution performance

The plot shows the per-token average loss as a function of 
the generated token positions.

● Train on 3-4 years old tiny stories. 

● Inference on Simple English Wikipedia (hard for 3-4 years old children)

● Similar to the three-moons problem, Memory Mosaics is faster and better in 

adjusting Wikipedia (a new data). 
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@Jianyu Zhang

Disentangled representation

● Benefits of disentanglement 
○ reducing the need of examples 

● The pressure of learning disentanglement 
○ Predictive Disentanglement – a cheap yet reliable pressure.

● An architecture to learn disentanglement in practice 
○ Memory Mosaics
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@Jianyu Zhang

3.  Inference-time learning
a memory-based method at inference-time, leveraging rich features and 

disentangled representation, reduces the relying of designers’ priori knowledge.
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@Jianyu Zhang

Inference-time learning

● Why study inference-time learning?

● Build model to perform inference-time learning

● Gap between: “training on everything” & inference-time learning 

approaches.
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@Jianyu Zhang

Why study inference-time learning?

● Given rich & disentangled features, how to learn new tasks (with few data)? 

○ 💡Transfer learning (fine-tuning): data preprocessing, choose architectures, tune 

hyper-parameters, …

● What if I have another new task to learn? 

○ Try the above process again. 

The learning process on new tasks involves a lot of priori knowledge from 
human designers. 

This is of course expensive. More importantly, it doesn’t reveal the Intelligence of 
Machine, but the Intelligence of us. 

Inference-time learning aims at reducing the need of priori knowledge from 
human designers while learning new tasks. 
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@Jianyu Zhang

model-based vs memory-based 
approach

● To learn new tasks one after other with less priori knowledge and fewer 
examples, a model needs to shape hypothesis space and avoid negative 
interference (catastrophic forgetting). 

● Shaping hypothesis space
○ Model-based: preprocessing, architectures, learning mechanisms (e.g. 

regularization) 
○ Memory-based: one smoothing parameter (e.g. bandwidth in kernel 

smoothing) 😄
● Negative interference

○ Model-based: hard to avoid. 
○ Memory-based method were initially motivated to solve the negative 

interference problem. [Atkeson et al. 1997]

Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning. Lazy learning, pages 11–73, 1997.
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@Jianyu Zhang

● Negative interference in memory-based and model-based methods.

[Atkeson et al. 1997]

Local Weight Regression 
(LWR) and Neural Network 
(NN)  are used to predict  

the torques of two jointed 
arm dynamics.

1

Train and evaluate on the 
same distribution A:

Both models work well!

2

Then both model are trained 
on ten attempts to make a 

particular desired 
movement. (distribution B)

3

After that, evaluate both 
models on distribution A.

NN fail, LWR success. 

4

Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning. Lazy learning, pages 11–73, 1997.
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@Jianyu Zhang

Build model to perform inference-time 
learning

● We need memory-based methods!

● Potential problem of memory-based method: Curse of dimensionality

● Rich feature and disentangled representation could reduce this 

difficulty

○ Rich feature: reduce the need for feature learning in inference time

○ Disentangled representation:  organize each feature nicely in a 

low-dimensional space

1. This argument was first suggested by Pascal Vincent during my Memory Mosaic talk at the FAIR Lab Offsite in June 2024. Thus, the speaker 
thanks Pascal Vincent for his insightful comments.

1

Model for inference-time learning: memory-based methods at inference-time  
+  rich features and disentangled representations obtained from pre-training stage.
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@Jianyu Zhang

Now, I am going to introduce an attempt to build such inference-time 
learning machine in practice, named Memory Mosaics v2.
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@Jianyu Zhang

Memory Mosaics v2 
Architecture

Zhang, J., & Bottou, L. (2025). memory mosaics at scale. under review.
Zhang, J. (2025). AI for the Open-World: the Learning Principles. arXiv preprint arXiv:2504.14751.
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@Jianyu Zhang

3-level Memories

Transformer Memory Mosaics v2
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@Jianyu Zhang

Why 3-level Memories?

● Goal of design: 
○ decompose & distribute “features” into different memories according to 

“how invariant a feature is”. 

○ learning new environments efficiently.

people can speak and eat.

Presentation

Page 49. 

people can speak and eat.

Presentation

Page 50, …

people can speak and eat.

Lunch

Ginger ale

Persistent memory

Long-term  memory

Short-term memory

time or  environments
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@Jianyu Zhang

Why 3-level Memories?

● Goal of design: 
○ decompose & distribute “features” into different memories according to 

“how invariant a feature is”. 

○ learning new environments efficiently.

people can speak and eat.

Presentation

Page 49. 

people can speak and eat.

Presentation

Page 50, …

people can speak and eat.

Lunch

Ginger ale

Persistent memory

Long-term  memory

Short-term memory

time or  environments

This is a lie!
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@Jianyu Zhang

A
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● The story is actually experiments driven.
● We tried to merge long-term and short-term memories as one memory.
● And got the following attention distribution of the last token:

Why 3-level Memories?

Token positions

Avg attention scores at far 
distance are “flat”.

(Independent of position)

Avg attention scores at 
close are “peaky”

(depend on  position)

Two different regimes. 
Separating them helps a lot 

when learning new tasks. 
Thus we distribute  the “flat” and “peaky” parts 

into long-term & short-term memories,
create 3-level memories.
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@Jianyu Zhang

Adaptive bandwidth (in gaussian kernel 
smoothing)

● Memory stores key-value pairs, retrieves values given a key.

● As the number of examples  in memory increases (n), the inverse 

bandwidth parameter  β of kernel smoothing must be increased to 

sharpen the response. 
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@Jianyu Zhang

Feature extractor of key and value 
● Key represents the recent past.

○ Memory mosaics compute key by 

normalizing      ,                                , where      

comes from the right RNN process.

●  Value represents the near future.
○ Memory Mosaics compute value by 

normalizing                                         , where 

rwkv [1] kinds of process

[1] Peng, Bo, et al. "Rwkv: Reinventing rnns for the transformer era." arXiv preprint arXiv:2305.13048 (2023).

In a preliminary small scale (1.5B)  experiment, this key feature extractor provide ~0.5% on common tasks, 
8% on ruler long-context tasks (train on 4k, evaluate on 32k). 
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@Jianyu Zhang

Evaluation dimensions 
● Persistent-knowledge storing and retrieval 

○ Knowledge learned from training data

○ Benchmarks: MMLU, arc_challenge, gsm8k, etc 

● New-knowledge storing and retrieval

○ Knowledge learned from inference data

○ Benchmarks: RULER question-answering (“needle in a haystack”).

● In-context learning

○ The ability to learn a new distribution/task, rather than simply store 

and retrieve new-knowledge. 

○ Tasks: multi-class classification with semantic labels (e.g. ‘dog’,  ‘cat’) 

or anonymous labels (e.g. ‘class-1’, ‘class-2’) 

OOD regime. 
The new task could be never 
seen in the training  data, or 
even conflict with training 

data. 
(interesting)

The prerequisite of 
effective in-context 

learning.
Imaging a  poor goldfish with  
only 7 seconds memory, how 
can it learn a 90-mins movie? 

In
-d

istrib
u

tio
n

                             o
u

t-o
f-d

istrib
u

tio
n

                                                        

√

IID regime. 
More data + larger model = 

better performance
(not our focus) 
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Models to compare

● Memory Mosaics v2 small & Transformer small^   (~Llama-1.5B size)
○ 24 layers, hidden dimension 2048,  trained on 200B tokens

● Memory Mosaics v2 large & Transformer large       (~Llama-8B      size)
○ 32 layers, hidden dimension 4096,  trained on    1T    tokens

● All models are pretrained on 4K context length. (marked as “4k”)

● Then fine-tuned on 32k context length. (marked as “32k”).

● We choose Transformer as the only baseline, because other approaches 

(RNNs, LSTM,  state-space model) do not work at all. 

^.  Memory Mosaics contains some  additional parameters than transformer due to the explicit working memory &  short-term memory design.  
For the easy of explanation, I simply names model size as “small” and “large”.  I will show later that the additional parameters are worthful.
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Persistent-knowledge storing and retrieval

● Task Description:  qa, arch_easy, mmlu, math,  etc (19 common tasks)

● Results:

○ Memory Mosaics and Transformer share the same “persistent memory” architecture 

(i.e. FFN with SwiGLU), 

○ perform closely in persistent-knowledge storing and retrieval (after extending to 32k 

context length). 
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● Results:

○ For many common tasks, the long-term memory in Memory Mosaics v2 does not even 

fire!  

○ We can safely remove the long-term memory in Memory Mosaics v2 after training 

without hurting the performance. (but reduce parameters and computation) 

16.7B

15.6B

18.9B

flops/token is estimated at context length 256.

Memory Mosaics v2 Large
Without long-term memory

Transformer Large

Memory Mosaics v2 Large
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New-knowledge storing and retrieval

● Task description (A question-answering task from RULER [Hsieh et al, 2024]):

○ Multiple articles are concatenated, followed by a question conspondings to 

one random article. 

○ Example: "Answer the question based on the given documents. The following are 

given documents. Document 1: [...] Document2: [...][...] Document 20: [...]Question: 

What religion were the Normans? Answer:”

○ Memory compression algorithms, e.g. RNNs, LSTM, state-space models, fail on 

this task by construction.

○ ‘Local window’ memory, e.g.  Alibi position-encoding, local-window attention, 

fails on this task by construction. 

Hsieh, Cheng-Ping, et al. "RULER: What's the Real Context Size of Your Long-Context Language Models?." arXiv preprint arXiv:2404.06654 (2024).
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● Results: 

New-knowledge storage and retrieval

Memory Mosaics can 
easily extrapolate 

context length x4 ~ x8 
times.

Memory Mosaics 
outperforms 

Transformer >10%
(53.4% vs 41.1%) 

Memory Mosaics v2 can effectively store and retrieve new-knowledge!

Trained on 4k 
context length, 
No fine-tuning.

Trained on 4k 
context length, 

Fine-tuning on 32k.



52

@Jianyu Zhang

In-context learning 
● Task description: Multi-class classification with semantic or anonymous labels

○ Input X example: 

■ “My bank transfer is still not showing up in my account.”

○ Target label Y example:

■ Semantic label      :  “balance_not_updated_after_bank_transfer”

■ Anonymous label:  “class_71”

○ Anonymous label tasks heavily rely on the learning of  “inference data”.

○ Prompt example: “Given a customer service query, please predict the intent of the 

query. [...]  The examples are as follows: query: [X1], instant: [Y1], [...], query:[X], instant:”

○ To reduce the influence of prompt strategies, we sweep various prompts strategies 

and choose the best for each model. 
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● 2) Results: 

With semantic label. E.g. Y= “balance_not_updated_after_bank_transfer”

With anonymous label. E.g. Y= “class_71”

Banking  Intent 
Classification 
https://paperswithcode.com/dataset/banking77

- X: is a bank-domain 
customer service query.
- Y:  indicate the category 
of the query.
- 77 categories in total.

Emotion Classification 
https://paperswithcode.com/dataset/goemotions

- X: is a Reddit comment
- Y: indicates the emotion 
category.
- 28 categories in total.

Relation  Classification 
https://paperswithcode.com/dataset/tacred

- X: is a sentence extracted from newswire or web text.
- Y: indicates the relationship of two objects in the sentence.
- 41 relation categories

In the plot of banking task, 

- horizontal-axis:  
indicates the number of 
demonstration shots, 
where each shot contains 
77 [X, Y] examples with 
different categories.

- vertical-axis:  indicates 
the accuracy of prediction.

The context length is ~29k 
when  demonstration 
shots = 16. 

https://paperswithcode.com/dataset/banking77
https://paperswithcode.com/dataset/goemotions
https://paperswithcode.com/dataset/tacred
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● 2) Results: 

With semantic label. E.g. Y= “balance_not_updated_after_bank_transfer”

With anonymous label. E.g. Y= “class_71”

Banking  Intent 
Classification 

77 classes

Emotion 
Classification 

28 classes

Relation  
Classification 

41 classes

Memory Mosaics: 
Increased 

performance  as 
more data coming

Memory Mosaics 
outperforms

Transformer by 
10%~20%
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With semantic label. E.g. Y= “balance_not_updated_after_bank_transfer”

With anonymous label. E.g. Y= “class_71”

●  Results: Same comparison on large networks (~8B parameters)

Same conclusion
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“Training on everything” or inference-time 
learning? 

● To train a huge foundational model, one can either:

○ brutally invest more money (GPUs and data), and simply reuse old 

recipe (architecture, etc). E.g. the mainstream training on everything

○ or try smart new techniques. E.g. Memory Mosaics v2, …  

● It might be hard to make a unique decision for all scenarios. 

● Let’s have a simple & brutal comparison to help this decision making:

How much additional data does the transformer recipe approach need to 
match the performance of memory mosaics v2?  
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How much does transformer  cost to match 
memory mosaics ?

● Train Memory Mosaics large with               1T           tokens,

● Train Transformer            large with 200B, 1T, 8T  tokens.

● Evaluate on both the new-knowledge storing & retrieval and in-context 

learning tasks. 
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How much does transformer  cost to match 
memory mosaics ?

Transformer lags 
behind Memory 

Mosaics by 12.3%
(41.1% vs 53.4%)

Transformer with 
x8 times training 

data still lags 
behind Memory 
Mosaics by 6.5%

How much data does transformer need to match Memory Mosaics?  16T? 32T? 
We don’t have enough data. We have to do it smartly.

● New-knowledge storing and retrieval.

●Trained on 4k context length, 
Fine-tuning on 32k.

Evaluate on 4k~64k.
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How much does transformer  cost to match 
memory mosaics ?

● In-context learning

With semantic label. E.g. Y= “balance_not_updated_after_bank_transfer”

Semantic label tasks: 
Transformer with x8 
times data starts to 

match the performance 
of Memory Mosaics

With anonymous label. E.g. Y= “class_71”

Anonymous label tasks: 
No way!
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@Jianyu Zhang

Inference-time learning
● Why study inference-time learning? 

○ Reduce the relying of priori knowledge from human designers

● Build model to perform inference-time learning

○ Memory Mosaics v2 

● Gap between the “training on everything” and inference-time learning.

○ > 8 times training data 

● Opportunities 

○ Replace long-term memory with hash-table or hierarchical memory to cut inference 

cost. 
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@Jianyu Zhang

● AI for the open-world is the Intelligence of machine.

● AI for the open-world requires unique principles and techniques. 
○ Rich Features, helps the learning of a broader range of unseen tasks;

○ Disentangled representation, reduces the number of examples required on 

unseen tasks

○ inference-time learning, reduces the relying of designers’ priori knowledge.

● This is still the early research stage of AI for the open-world.
○ It costs 5 years to explore, probably another 5-30 years to complete. 

● A huge research space in AI for the open-world is opening for us!

Conclusion


